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Abstract
Since noise is ubiquitous in both nature and artificial systems, the stochastic
perturbation influence on the dynamics of the unidirectionally coupled Ikeda
models is investigated in this paper. On the one hand, sufficient conditions
on the complete synchronization between these noise-perturbed and chaotic
models are mathematically established, and an estimation of the sample
transverse Lyapunov exponent is rigorously derived. On the other hand,
specific examples and their numerical simulations are provided to illustrate
the feasibility of our theoretical results. Moreover, the results on the Ikeda
models are further generalized to a wide class of coupled nonlinear systems
with multiple time delays and a common additive noise. It is believed that
the idea and approach developed in this paper could be further generalized to
investigate some other problems on chaos synchronization and chaos control
with stochastic perturbation.

PACS numbers: 05.45.Xt, 05.45.Vx., 05.40.Ca, 05.40.Jc, 82.40.Bj, 02.60.Cb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Various synchronization phenomena in two or more coupled oscillators modelled either by
continuous systems or by discrete systems has received a great amount of attention since
synchronization is of fundamental importance in many complex systems and permeating
all kinds of sciences, ranging from physical to biological, from chemical to computer and
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even to social sciences [1–5]. In particular, chaos synchronization, due to its potentially
practical application in secure communications, in modelling brain activity, and in pattern
recognition phenomena, has attracted a growing interest over the last decade [6–12]. Several
types of synchronization have been observed experimentally and defined theoretically in
recent studies: completed synchronization, lag synchronization, phase synchronization and
generalized synchronization. For a more accurate description of these types of synchronization,
refer to [13–16], a recently comprehensive review [17] and references therein.

As is known to all, noise is omnipresent in both nature and man-made systems. Therefore,
investigation of the noise effect on the synchronization phenomenon in the noise-perturbed
chaotic system has become an important research topic. Actually, different noise might play
a different (destructive or constructive) role in a different sense of synchronization. On the
one hand, as for the destructive effect, it is of our common knowledge. The main concern
of this kind of effect is how to accurately estimate the stochastic perturbation destructing
the synchronization in the coupled continuous systems. A series of researches [18, 19] have
been devoted to this topic, showing a clear relation between the noise intensities and coupling
parameters to guarantee a successful complete or generalized synchronization in the coupled
continuous systems with stochastic perturbation. On the other hand, the enhanced occurrence
of complete or phase synchronization is of a constructive role when various noise coupling
terms are taken into account in chaotic oscillators. The constructive effect of noise in these
physical systems and chemical oscillators are quite similar to that in the famous phenomenon
called stochastic resonance [20, 21]. As is reported in literature [22–25], the constructive
role is always attributed to noise intrinsic property, for instance, nonzero mean of the added
noise, or is due to noise influence on those orbits generated by the chaotic systems, for
example, the residence time in the weak unstable region of the systems’ orbits is probably
reduced by the weakly additive noise however that in the region where the eigenvalues of the
corresponding Jacobian matrix possess negative real part significantly augments. No matter
which kind of noise effect is taken into account, the transverse Lyapunov exponent, describing
the convergence rate of the orbits along the synchronization manifold, should be numerically
or theoretically negative for an achievement of synchronization in the coupled systems with
stochastic perturbation.

Moreover, recent papers [26–29] have consecutively come forth to investigate the relations
between parameter mismatches and several types of synchronization in unidirectionally
coupled chaotic systems with time delays. By utilizing the so-called Krasovskii–Lyapunov
functional approach and numerically calculating the largest Lyapunov exponent transversal to
the complete synchronization manifold, the authors of these papers, respectively, presented
theoretical conditions and experimental techniques for realization of synchronization in many
linearly or nonlinearly coupled systems, such as the Ikeda models and the Mackey–Glass
systems. However, as is mentioned above, synchronization of concrete models is always
subject to internal and external noise. For example, the coupling rate could be perturbed
by some white noise; the coefficient in the driven system could be perturbed by the other
white noise independent of the previous one; the whole systems might be settled in a rapidly
fluctuating environment. Naturally, a question arises: ‘Are there any theoretical sufficient
conditions on the coupling parameters that guarantee a successful synchronization between
two coupled and time-delayed chaotic models with stochastic perturbation?’ The essential aim
of the paper is to provide a positive answer of this question. In fact, we discuss the influence
of some type of stochastic perturbation in the coupled chaotic systems with time delays. More
concretely, we not only derive several conditions on complete synchronization between the
coupled Ikeda models with some specific noise perturbation by virtue of the theoretical results
on the stability of stochastic differential equations [33–37], but also generalize the approach
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to a wide class of nonlinear chaotic systems with multiple time delays and a common additive
noise.

The rest of the paper is organized as follows. In section 2, preliminary Ikeda models with
stochastic perturbation are basically depicted. In section 3, sufficient conditions on complete
synchronization are rigorously presented; meanwhile, an accurate estimation of the sample
transverse Lyapunov exponent is also theoretically given. Furthermore, some concrete models
with specific parameters are provided to illustrate the feasibility of the theoretical results
obtained in section 4, and a generalization of the approach to a wide class of nonlinear chaotic
oscillators with multiple time delays and a common additive noise is performed in section
5. In section 6, the paper is closed with some conclusions and remarks. Besides, for self-
containing and avoiding complicated notions, necessary criteria are introduced in the form of
appendix.

2. Model description: the coupled Ikeda models with stochastic perturbation

As is known to all, the intrinsical dimension of differential equations with time delay could
approach infinity if their time delay increasingly arrives at some critical value. This implies
that continuous systems with time delay, even though their real dimension is less than three,
still exhibit a variety of dynamics, including chaotic motion [30]. The Ikeda model, introduced
to describe the dynamics of an optical bistable resonator, is such a prototype [31, 32]. This
model could be mathematically given in the form of

dx(t) = {−αx(t) + m sin[x(t − τ)]} dt, (1)

where the state variable x represents the phase lag of the electric field across the resonator, α

is the relaxation coefficient for the phase lag x,m denotes the laser intensity injected into the
systems and τ stands for the round-trip times of the light in the resonators or feedback delayed
times in the systems. Figure 1 numerically shows chaotic attractors generated by the Ikeda
model (1) with specific parameters in different phase planes. The orbits and trajectories of the
Ikeda model (1) in these figures exhibit complicated dynamics and are interweaving even in
the two-dimensional phase plane, which is consistence with the infinite-dimensional property
of differential equations with time delay.

In this paper, we adopt model (1) as a driving system, take the model governed by

dy(t) = {−αy(t) + m sin[y(t − τ)] + [K + ϑKẇK(t)] · z(t) + ϑDẇD(t) · z(t − τ)} dt

as a response system, where the state variable y stands for the response phase lag of the electric
field across the resonator, K represents the coupling strength between the driver x and the
response y, and coupling term z(t) denotes the error between the x and y by z(t) = x(t)−y(t).
White noises ẇK(t) and ẇD(t) are either the same or mutually independent. Constants ϑK

and ϑD are noise strengths. More realistically, the white noise with strength ϑK usually could
be regarded as an environmental disturbance to the coupling strength K, and the white noise
with strength ϑD is supposed to be induced by the fluctuation of the time delay.

In what follows, we write the above particular response system in a more general form

dy(t) = {−αy(t) + m sin[y(t − τ)] + K · z(t)} dt + σ(z(t), z(t − τ), t) dW(t), (2)

where W(t) = [w1(t), . . . , wm(t)]� mathematically stands for an m-dimensional Brownian
motion defined on a complete probability space (�, F, P) with a natural filtration {F t }t�0.
Hence, each ẇi(t) = dwi(t)

dt
becomes commonly white noise, and is assumed to be mutually

independent of ẇj (t) for every i, j with i �= j . Besides, the term σ : R × R × {[−τ, 0] ∪
R+} → R

1×m is called the noise intensity row-matrix-valued function, and σ(0, 0, t) ≡ 0.
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Figure 1. Chaotic attractors, generated by the Ikeda model (1), are, respectively, plotted in the
x(t) versus x(t−1) plane (a) and in the x(t) versus ẋ(t) plane (b). All the corresponding parameters
in model (1) are taken as α = 6,m = 25, τ = 1. The initial function φ1(t) ≡ −2(−1 � t � 0)

and the time-step size δt = 0.01.

Clearly, for the above particular response system, the intensity matrix-valued function is
σ(z, v) = [ϑKz, ϑDv] and W(t) = [wK(t), wD(t)]� if these noises are mutually independent.
It is worth mentioning that the noise term imported here is of multiplicative case. This
is reasonable because this type of stochastic perturbation can be regarded as a result from
the internal error and the bias of the real model. When particular oscillators are concretely
established for simulations, inaccurate design or rapidly environmental fluctuation on the
coupling strength and some other components in the systems cannot be avoidable. This thus
leads us to import stochastic perturbation in the response system. Also note that the noise
term here is of a multiplicative form interpreted in the sense of Itö which implies that the
dependence of the process x(t)−y(t) on the white noise Ẇ (t) at the same instant time t could
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be neglected. Although it seems to be a mathematical limiting procedure, this interpretation
of multiplicative noise is reasonable when the rapidity of the environmental fluctuations is
far less than the macroscopic time scale intrinsically possessed by concrete systems, such
as the external fluctuations in a large class of biological and economic dynamical systems
[48]. Above expatiation thus shows that the noise form imported in the response system
is not much artificial but of a real significance. In addition, since there is an equivalent
transformation between the noise term in the Stratonovich interpretation and in the Itö sense,
the following discussion also could be adapted to the systems where the Stratonovich noise
term is considered.

Consider the complete synchronization between systems (1) and (2) in the physical sense.
Then from the driving system (1) and the response system (2), it yields their error dynamics

dz(t) = {−(α + K)z(t) + m cos[ξ(t)]z(t − τ)} dt − σ(z(t), z(t − τ), t) dW(t), (3)

where ξ(t), in light of the classical mean value theorem, is a time-varying number in between
the interval (x(t − τ) ∧ y(t − τ), x(t − τ) ∨ y(t − τ)). Here, the notions ∧ and ∨ stand for
taking the minimum and maximum from two given numbers, respectively. Through out this
paper, it is assumed that the term σ(u, v, t) is locally Lipschitz continuous and not divergent
as fast as the square of its components, thus satisfying the linear growth condition that will be
more accurately illustrated in the following section. Hence, from the mathematical viewpoint,
it follows from [35] that the error dynamics (3) possesses a unique global solution on t � 0,
denoted by z(t;φ) for any initial data φ ∈ Cb

F0
([−τ, 0]; R). This conclusion is consistent with

the hypothesis (i) of criterion A in the appendix. Here, Cb
F0

([−τ, 0]; R) represents the family of
all F0-measurable bounded C([−τ, 0]; R)-valued random variables, in which C([−τ, 0]; R)

denotes the sets of all continuous functions from [−τ, 0] to R.
It is not hard to see that z(t; 0) ≡ 0 is a trivial solution of the error dynamics (3). We

say the trivial solution is globally asymptotically attractive in the physical sense if and only
if limt→∞ z(t;φ) = 0 for almost every initial datum φ ∈ Cb

F0
([−τ, 0]; R). It should be

mentioned that the trajectory generated by system (3), initiating from nonzero initial datum,
will never approach but be convergent to the asymptotically stable trivial solution. This means
that the influence of the above-described noise on the coupled systems will not disappear but
asymptotically attenuate provided that the trivial solution could be controlled as a globally
asymptotical attractor.

3. Complete synchronization between coupled Ikeda models with stochastic
perturbation

3.1. Sufficient conditions on complete synchronization in a physical sense

As is mentioned in the preceding section, z(t) = 0 is a trivial solution of the error dynamics
(3). That is, if this trivial solution is globally asymptotically attractive in the physical sense,
the complete synchronization between systems (1) and (2) could be realized. Also it has
been mentioned that the hypothesis (i) of criterion A in the appendix is manifestly contented
for dynamics (3). So, in order to investigate the complete synchronization between systems
(1) and (2) by this criterion, we only need to construct a function V ∈ C2,1(R × R+, R+)

and determine the feasible region of coupling rate K and some other parameters, where the
hypothesis (ii) of criterion A is also satisfied.

For this purpose, construct a function V ∈ C2,1(R × R+, R+) by V (u, t) = u2. Thus,
according to formula (A.2) in the appendix, the operation of L on the function V along with
the error dynamics (3) gives
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LV (z(t), z(t − τ), t) = 2z(t){−(α + K)z(t) + m[cos ξ(t)] · z(t − τ)}
+ σ(z(t), z(t − τ), t)σ�(z(t), z(t − τ), t). (4)

In what follows, we are going to present an estimation of LV (z(t), z(t − τ), t) in
equation (4). Note that it has been already assumed in the last section that the noise intensity
row matrix-valued function σ(u, v, t) is controllable and not divergent as fast as the square of
its components. Then, it is reasonable to presume that this matrix could be estimated by

σ(u, v, t)σ�(u, v, t) � ϑu2 + ςv2, (5)

where both ϑ and ς are non-negative constants. From the physical and engineering viewpoint,
this assumption means that noise intensities due to inaccurate design and environmental
fluctuation are at most linearly proportional to the amplitude of system states, so that the
noise intensity could be controlled in some extent. In real application, we may observe and
estimate the variation of noise intensities with systems states, and then, if necessary, design
some equipment to suppress the noise influence to be somewhat consistent with the estimation
(5). Naturally, both constants ϑ and ς become some controllable and adjustable parameters
in the evaluation of this practical design.

Now, together with this estimation and equation (4), it yields the following estimation of
LV (z(t), z(t − τ), t):

LV (z(t), z(t − τ), t) � −2(α + K)z2(t) + 2|m| · |z(t)| · |z(t − τ)| + ϑz2(t) + ςz2(t − τ)

� [−2(α + K) + ϑ + ς + h]z2(t) + 2|m| · |z(t)| · |z(t − τ)|
+ (ς − h)z2(t − τ) − (ς + h)z2(t) + hz2(t − τ),

where h is a selectively positive number and we will discuss the role of the number h acts
in the complete synchronization between systems (1) and (2) later. On the other hand, if the
following inequalities on the parameters hold:

m2 < (h − ς)[2(α + K) − ϑ − ς − h],
(6)

ς < h, −2(α + K) + ϑ + ς + h < 0,

then the symmetric matrix

A(K,m) =
[−2(α + K) + ϑ + ς + h |m|

|m| −h + ς

]
is definitely negative and its maximal eigenvalue, denoted by −ρ, consequently satisfies

0 > −ρ = −(α + K) +
ϑ

2
+ ς +

√
m2 +

[
−(α + K) +

ϑ

2
+ h

]2

� −h.

Therefore, with the inequality condition (6), the estimation of LV (z(t), z(t − τ), t) could be
further given by

LV (z(t), z(t − τ), t) � −(ρ + ς + h)z2(t) + (h − ρ)z2(t − τ),


= −ω1(z
2(t)) + ω2(z

2(t − τ)). (7)

Obviously, ω1(u) > ω2(u) for any u �= 0. Then, summarizing the above argument and
utilizing criterion A, we obtain the following result on the sufficient conditions on complete
synchronization between systems (1) and (2).

Conclusion 3.1. The complete synchronization between the coupled Ikeda models (1) and (2)
could be achieved for almost every initial data provided:

(i) the intensity matrix is estimated by (5) for two non-negative constants ϑ and ς ;
(ii) the coupling rate K and positive number h satisfy the inequality condition (6).
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Note that once the term ‘almost every’ (a.e.) or ‘almost surely’ (a.s.) is adopted to
describe a event, it means that this event could be realized with probability one. From the
physical viewpoint, it implies that the complete synchronization between systems (1) and (2)
could be surely realized provided that the conditions established above are satisfied.

Furthermore, the number h is an important adjustable parameter since different selection
of it may lead to different constraint condition on the coupling strength K. For instance, if
h = ς + 1, we obtain

m2 + ϑ + 2ς + 1 < 2(α + K);
if h = α + K , we have

m2 < (α + K)2 − (ϑ + 2ς)(α + K) + ς(ϑ + ς). (8)

Moreover, if h = α + K − ϑ
2 , we get

m2 <

[
(α + K) − ϑ

2
− ς

]2

. (9)

Therefore, the constraint of K is so much dependent on the choice of the positive number
h, which implies that a proper selection of this number may lead to optimal estimations of
the coupling strength K and other parameters. Furthermore, condition (9) shows that both
the coupling strength K and the relaxation coefficient α positively contribute to the complete
synchronization; nevertheless, both the laser intensity m and the noise intensity parameters ϑ

and ς act an negative role. To be candid, this analysis accords with our common knowledge
that the noise induced by the environmental fluctuation or the system bias usually plays a
destructive role in chaos synchronization. However, we not only rigorously validate the fact
but establish here a more accurate relation among these parameters and noise intensities for
a successful complete synchronization as well. More importantly, our analytical results also
guarantee a successful synchronization even when the noise influence is very strong.

3.2. Negative sample transverse Lyapunov exponent

Theoretical and numerical investigations of the so-called Lyapunov exponent are always
performed so as to describe the various dynamical evolutions exhibited by specific systems. In
particular, a negative transverse Lyapunov exponent corresponds to convergent dynamics with
respect to the synchronization manifold, while a positive one indicates sensitive dependence
on initial conditions and unsynchronized dynamics. In this subsection, we are to rigorously
establish an estimation the sample transverse Lyapunov exponent of the systems (1) and (2),
showing that the complete synchronization could be exponentially realized in the physical
sense. For this purpose, we first assume that the following performed argument is based on the
premises of conclusion 3.1. Thus, from the well-known Itô formula [33] and the estimation
(7), it yields that for some positive λ,

eλt z2(t) = φ2(0) +
∫ t

0

{
eλs[λz2(s) + Lz2(s)]

}
ds +

∫ t

0
2 eλsz(s)σ (z(s), z(s − τ), s) dW(s)

� φ2(0) + (λ − P)

∫ t

0
eλsz2(s) ds + Q

∫ t

0
eλsz2(s − τ) ds

+
∫ t

0
2 eλsz(s)σ (z(s), z(s − τ), s) dW(s)


= φ2(0) + (λ − P)

∫ t

0
eλsz2(s) ds + Q

∫ t

0
eλsz2(s − τ) ds + M(t), (10)

7
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where the positive constants P = ρ + ς + h,Q = h − ρ, and P > Q. Note a fact that∫ t

t−τ

eλsz2(s) ds =
∫ t

−τ

eλsz2(s) ds −
∫ t

0
eλ(s−τ)z2(s − τ) ds. (11)

Multiplication of both sides of this equation by a factor Q eλτ and adding this newly-obtained
equation to estimation (10) produce

0 � eλt z2(t) + Q eλτ

∫ t

t−τ

eλsz2(s) ds

� φ2(0) + Q eλτ

∫ 0

−τ

eλsφ2(s) ds + (λ − P + Q eλτ )

∫ t

0
eλsz2(s) ds + M(t)


= M̃(t),

which clearly implies that M̃(t) is non-negative. Also it is easy to verify that M(t) is a
real-valued continuous local martingale with M(0) = 0. Therefore, by utilizing criterion B in
the appendix, we can conclude that limt→∞ M̃(t;φ) < ∞ a.s. provided that

ξ(λ)

= λ − P + Q eλτ = 0. (12)

Note that P > Q, ξ(0) = −P + Q < 0, and ξ(P − Q) = −Q + Q e(P−Q)τ > 0. Thus, it
is from the continuity of the function ξ(λ) that equation (12) is solvable inside the interval
(0, P − Q). More accurately, there must exist at least a root λ∗ ∈ (0, P − Q) = (0, 2ρ + ς)

of equation (12), namely ξ(λ∗) = 0. Setting λ = λ∗, we obtain that

lim sup
t→∞

{eλ∗t z2(t;φ)} < ∞, a.s. (13)

Since conclusion 3.1 implies the trivial solution of the error dynamics (3) is almost
surely globally asymptotically attractive, equation (13) consequently implies that the sample
transverse Lyapunov exponent of the systems (1) and (2) could be expressed and estimated by

lim sup
t→∞

{
1

t
log[|z(t;φ)|]

}
� −λ∗

2
, a.s. (14)

Now, the above-performed argument could be concluded as the following result.

Conclusion 3.2. Assume that all the hypotheses in conclusion 3.1 are satisfied. Then, not
only the complete synchronization between the coupled Ikeda models (1) and (2) could be
realized in the physical sense, but also the speed of approaching the complete synchronization
manifold can be almost surely controlled by an exponential damping rate, that is, the upper
estimation of the sample transverse Lyapunov exponent of the coupled Ikeda models can be
restrained as (14).

4. Illustrative examples

In this section, we provide some specific examples to show the feasibility of the above-
established sufficient conditions on the complete synchronization between the coupled Ikeda
models. Even though the choice of the parameters and the form of the stochastic perturbations
designed below are somewhat synthetic, the possible application of the theoretical results is
expressly illustrated.

Example 4.1. Take all the parameters and the noise intensity row matrix in systems (1)–(3) as

α = 6, m = 25, K = 34, τ = 1, and σ(u, v, t) = −0.5u + 0.4v.

8
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Then, σ(u, v, t) satisfies the locally Lipschitz continuous condition and the linear growth
condition, i.e.,

σ 2(u, v, t) � 0.45u2 + 0.36v2.

Let ϑ = 0.45 and ς = 0.36. Therefore, it is not hard to verify that condition (8) is
satisfied when h = α + K = 40 and the corresponding maximal eigenvalue −ρ of the matrix
A(34, 25) is approximately equal to −14.4140. It is from conclusion 3.1 that the complete
synchronization between systems (1) and (2) could be realized for almost every initial function
φ ∈ Cb

F0
([−1, 0]; R) of the error dynamics (3).

In addition, with the aid of Matlab program, we can numerically obtain an approximate
solution of equation (11) with the above specific parameters, namely λ∗ ≈ 0.7474. Therefore,
from conclusion 3.2, it follows that the sample transverse Lyapunov exponent of the coupled
Ikeda models (1) and (2) is not larger than −λ∗/2 ≈ −0.3737 for almost every initial function
φ ∈ Cb

F0
([−1, 0]; R) of the error dynamics (3). Accordingly, with these specific parameters,

the speed of trajectory approaching the complete synchronization manifold can be almost
surely controlled by an exponential damping rate which is larger than 0.3737.

By adopting the well-known Euler–Maruyama numerical scheme [38, 39], we,
respectively, depict different sample paths of systems (1)–(3) in figures 2(a)–(c). Those
sample paths show the evolution process of complete synchronization between the driving
x(t;φ1) and the response y(t;φ2). It is noted that under some hypotheses the numerical
solution given by Euler–Maruyama numerical scheme will converge to the true solution of the
original system in an expectation sense as the sample time-step size δt tends to zero [40, 41].
However, these hypotheses on the continuity of the initial data, the local Lipschitz condition
and square boundedness of the vector field are all satisfied for our examples and simulations.
So, to some extent, all the sample paths plotted in figure 2 can reflect the true stochastic
dynamical evolution of systems (1)–(3) if the sample time-step size is sufficiently small.

Example 4.2. Consider the parameters in systems (1)–(3) as α = 3,m = −18, τ = 2.
Meanwhile, assume that W(t) = [w1(t), w2(t)]� is a two-dimensional Brownian motion and
the noise intensity matrix is in the form of

σ(u, v, t) = [A sin 2u + B(cos t)v, C sin v],

where A,B, and C are undetermined parameters. Then,

σ(u, v, t)σ (u, v, t)� = A2 sin2 2u + 2AB(cos t)(sin 2u)v + (B cos t)2v2 + C2 sin2 v

� 4(A2 + |AB|)u2 + (B2 + |AB| + C2)v2


= ϑu2 + ςv2.

Therefore, setting h = α + K − ϑ
2 and utilizing condition (9), we clearly have

K > |m| +
ϑ

2
+ ς − α

= 16 + 2A2 + B2 + C2 + 2|AB|, (15)

which, due to conclusion 3.1, becomes a sufficient condition of the complete synchronization
between systems (1) and (2) for almost every initial data.

Numerical simulations for a process of complete synchronization between systems (1)
and (2) and unsynchronized dynamics are shown in figure 3(a). As a matter of fact, these
unsynchronized dynamics are due to the selection of K, which violates condition (15).
Numerical simulations for sample paths of the synchronized system (1) and (2) starting
from different initial data are plotted in figure 3(b). A feasible region in the A–B–K space,
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Figure 2. sample paths in the x(t) versus y(t) plane (a), in the t versus z(t) plane (b) and in the
y(t) versus ẏ(t) plane (c). The variation of 1

t
log |z(t; φ)| with the time scale t is plotted at the

bottom right corner of (b). The sample path from t = 0 to t = 10 is marked by dotted line in (c).
All the corresponding parameters in systems (1) and (2) are taken as α = 6,m = 25, K = 34 and
τ = 1. The initial functions φ(t) = φ1(t) − φ2(t) ≡ −3 − 3 = −6(−1 � t � 0) and the sample
time-step size δt = 0.01. Initial point, highlighted by hollow dot or asterisk, denotes the position
of the sample paths at t = 0.
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Figure 3. (a) Numerical simulations for synchronized (K = 60) and unsynchronized (K = 9)

dynamics when A = 3.5, B = −2, C = 1 and initial functions φ1(t) = 15, φ2(t) = 19, (−2 �
t � 0). (b) sample paths, in the x(t) versus y(t) plane, starting from different initial functions,
φ1(t) = − sin t + 3, φ2(t) = et − 5 and φ1(t) = −e2t + 8, φ2(t) = cos 2t − 10, (−2 � t � 0).
Here, A = −2, B = 0.5, C = 1.5. (c) Feasible region is located above the plotted hyperplane in
the A–B–K space when |B| = |C|. The sample time-step size δt = 0.01.
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when |B| = |C|, is depicted in figure 3(c). The complete synchronization between (1) and
(2) could be almost surely achieved provided that the values of all the parameters are chosen
from this region. From this figure, we can see that the complete synchronization could be
always realized even though the intensity of noise perturbation reaches a rather large value.
We only need to design the coupling strength and other parameters to satisfy condition (15).
This means that the above-described noise term is controllable in some extent.

5. Synchronization of generalized models

In this section, we are to generalize the above-performed approach to a wide class of coupled
nonlinear systems with multiple time delays and a common additive noise. To this end,
consider the complete synchronization between the driving system

dx(t) = {A(x(t)) + F(x(t − τ1))} dt + ρ dWa(t), (16)

and the response system

dy(t) = {A(y(t)) + F(y(t − τ1)) + G(z(t))} dt

+ σ(z(t), z(t − τ1), . . . , z(t − τκ), t) dW(t) + ρdWa(t), (17)

where z(t) and W(t) are the same meaning as those defined in section 2, and κ is the number
of the time delays which might be different. The function A(u) satisfies

A(u) − A(v)

u − v
� −α,

for arbitrary u �= v and some constant α. The nonlinear function F(u) satisfies

Hd � F(u) − F(v)

u − v
� Hu,

for arbitrary u �= v and some constants Hu and Hd . Denote by H1 the larger one between
the constants |Hu| and |Hd |. The coupling function G(u) could be either linear or nonlinear,
satisfying the locally Lipschitz condition and

G(0) = 0, H2 � G(u) − G(v)

u − v
,

for arbitrary u �= v and some positive constant H2. The noise intensity row matrix
σ(u, v1, . . . , vκ , t) satisfies σ(0, 0, . . . , 0, t) = 0 and

σ(u, v1, . . . , vκ , t)σ
�(u, v1, . . . , vκ , t) � ϑu2 +

κ∑
i=1

ςiv
2
i ,

where ϑ and each vi are non-negative constants. Apart from the above-illustrated terms,
ρdWa(t) is a common additive noise and ρ is the noise strength. In particular, ρ is not so large
that the additive noise may not destroy the original chaotic driving signal so much. Actually,
the additive noise strength, though influencing the driving signal, will not at least obstruct the
error dynamics of systems (16) and (17). Clearly, the error dynamics could be expressed by

dz(t) = {A(x(t)) − A(y(t)) − G(z(t)) + F(x(t − τ1)) − F(y(t − τ1))} dt

− σ(z(t), z(t − τ1), . . . , z(t − τκ), t) dW(t), (18)

which is independent of the additive noise term. Similarly, construct a function V ∈
C2,1(R × R+, R+) by V (u, t) = u2. Hence, analogous to formula (A.2) for system (A.1), a
direct calculation along with the system (18) yields

LV (z(t), z(t − τ1), . . . , z(t − τκ), t) = 2[A(x(t)) − A(y(t))]z(t) − 2G(z(t))z(t)

+ 2[F(x(t − τ1)) − F(y(t − τ1))]z(t)

+ σ(z(t), z(t − τ1), . . . , z(t − τκ), t) × σ�(z(t), z(t − τ1), . . . , z(t − τκ), t).
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Thus, from the above hypotheses on the functions A(u), F (u),G(u) and σ(u, v1, . . . , vκ , t),
we can obtain an estimation

LV (z(t), z(t − τ1), . . . , z(t − τκ), t)

� −2(α + H2)z
2(t) + 2H1 · |z(t)| · |z(t − τ1)| + ϑz2(t) +

κ∑
i=1

ςiz
2(t − τi)

� −
[
ρ̄ +

κ∑
i=1

(ςi + hi)

]
z2(t) +

κ∑
i=1

(hi − ρ̄) z2(t − τi),

where α, each Hi and hi are the constants satisfying that the symmetric matrix

Ã =

⎡⎢⎢⎢⎢⎣
ϑ − 2(α + H2) +

κ∑
i=1

(ςi + hi) H1 0

H1 ς1 − h1 0

0� 0� D

⎤⎥⎥⎥⎥⎦
is definitely negative and its maximal eigenvalue, denoted by −ρ̄, is negative. Here,
0 ∈ R

1×(κ−1) is a zero row vector and D = diag{ς2 − h2, . . . , ςκ − hκ} is a diagonal
matrix. In fact, the matrix Ã is definitely negative provided that the following inequalities
simultaneously hold:

H 2
1 < (h1 − ς1)

[
2(α + H2) − ϑ −

κ∑
i=1

(ςi + hi)

]
, −2(α + H2) + ϑ +

κ∑
i=1

(ςi + hi) < 0,

ςi < hi(i = 1, . . . , κ). (19)

Now, similar to the argument performed in section 3.2, we can obtain that for some positive
µ,

eµtz2(t) � ϕ2(0) +

[
µ − ρ̄ −

κ∑
i=1

(ςi + hi)

] ∫ t

0
eµsz2(s) ds

+
κ∑

i=1

(hi − ρ̄)

∫ t

0
eµsz2(s − τi) ds + M̂(t), (20)

where ϕ ∈ Cb
F0

([−τM, 0]; R) is an initial datum of the error dynamics (18), τM =
max{τ1, . . . , τκ}, and M̂(t) = ∫ t

0 2 eλsz(s)σ (z(s), z(s − τ1), . . . z(s − τκ), s) dW(s) is a real-
valued continuous local martingale with M̂(0) = 0. Together with the inequality (20) and the
integral property in equation (11) for each time delay τi , we have

0 � eµtz2(t) + eµτM

κ∑
i=1

(hi − ρ̄)

∫ t

t−τi

eµsz2(s) ds

� ϕ2(0) +

[
µ − ρ̄ −

κ∑
i=1

(ςi + hi) + eµτM

κ∑
i=1

(hi − ρ̄)

] ∫ t

0
eµsz2(s) ds

+
κ∑

i=1

(hi − ρ̄) eµτM

∫ 0

−τi

eµsϕ2(s) ds + M̂(t)


= M(t).
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Therefore, it follows from criterion B in the appendix that limt→∞ M(t;φ) < ∞ a.s. and

lim sup
t→∞

{
1

t
log[|z(t;ϕ)|]

}
� −µ∗

2
, a.s., (21)

where µ∗ is a positive root of the following equation with respect to the variable µ:

µ − ρ̄ −
κ∑

i=1

(ςi + hi) + eµτM

κ∑
i=1

(hi − ρ̄) = 0.

Consequently, we approach the following conclusion.

Conclusion 5.1. Assume that all the hypotheses in this section on the functions
A(u), F (u),G(u) and σ(u, v1, . . . , vκ , t) are satisfied and inequalities (19) hold. Then,
not only the complete synchronization between the coupled generalized models (16) and (17)
could be realized in the physical sense, but also the upper boundary of the sample transverse
Lyapunov exponent of the coupled models can be estimated by (21).

As a matter of fact, conclusion 5.1 shows sufficient conditions on how to design
the coupling function G(u) for an achievement of the complete synchronization between
the coupled systems (16) and (17) with stochastic perturbation. This implies that the
synchronization might be realized in concrete simulations even though some of or all of the
above hypotheses are violated. Besides, it could be found that the complete synchronization
could be achieved in the physical sense even when the driving signal is destroyed by the
common additive noise with a large strength. Obviously, the common additive noise does not
play a role in our established results, actually influencing the dynamics of the chaotic driving
signal. As reported in literature, this influence with a small amount of noise strength on the
driving signal may profit the chaos synchronization. Thus, our theoretical result proposes a
feasible and rigorous way to realize the complete synchronization when the strength of the
common additive noise is relatively large.

6. Conclusion

In this paper, we have investigated the complete synchronization between the coupled Ikeda
models with stochastic perturbation. By using the LaSalle-type criterion on the stability of
stochastic differential equation with time delay and semi-martingale convergence theorem,
we have shown that the complete synchronization could be almost surely realized and the
corresponding sample transverse Lyapunov exponent is negative provided that some inequality
conditions of coupling parameters and noise intensities are satisfied. Also, we have presented
several specific examples and their simulation results, which illustrate the feasibility of the
theoretical conditions established in this paper. In addition, we have generalized our approach
to a wide class of coupled noised-perturbed chaotic systems with multiple time delays and a
common additive noise, and given some extended results.

Since the world is replete with noise, either of destructive influence or of constructive
effect, stochastic perturbation is unavoidable in real application of the synchronization theory.
Then, a question on how the stochastic perturbation tampers the existing results for clean
systems arises. Our results in the paper somewhat answer this question, showing that the
complete synchronization could be almost surely achieved for a certain type of stochastic
perturbation and coupling strength. Moreover, the idea and approach developed in this
paper could be generalized to investigate different type of chaos synchronization in different
chaotic oscillators with or without time delays, such as the Lorenz-like systems [42, 43],
various circuit systems [44], the impulsive differential systems [45], the fractional differential
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equations [46] and various complex networks [47]. Therefore, we believe that our theoretical
results established in the paper are of importance and might make some contribution to
the related research field. As for the enhancement of chaos synchronization due to some
types of noise in chaotic systems, the stochastic theory [33] allows us to make a further
theoretical investigation of this dynamical scenario. The above-mentioned generalizations in
various models and theoretical investigation on the constructive influence of noise, along with
the development of theoretical and applicable criteria, become our current research topics
[18, 19, 25].
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Appendix. Criteria for stability of stochastic differential equations with time delay

For the sake of self-containing of the paper, we introduce the criteria for the stability of
stochastic differential equations with delay in this section. Consider the stochastic differential
equation with time delay in the general form of

dz(t) = f (z(t), z(t − τ), t) dt + σ(z(t), z(t − τ), t) dW(t). (A.1)

C2,1(R × R+, R+) stands for the family of all non-negative functions V (u, t) on R × R+

which are continuously twice differentiable in x and once differentiable in t. Then, for each
V ∈ C2,1(R × R+, R+), the diffusion operator L along with system (A.1) could be expressed
by

LV (u, v, t) = Vt(u, t) + Vu(u, t)f (u, v, t) + 1
2σ(u, v, t)σ�(u, v, t)Vuu(u, t), (A.2)

where Vt(u, t) = ∂V (u,t)

∂t
, Vu(u, t) = ∂V (u,t)

∂u
and Vuu(u, t) = ∂2V (u,t)

∂u2 . Now, the LaSalle-type
criterion for stochastic differential equation with delay could be summarized as follows.

Criterion A [34]. Assume that (i) system (A.1) possesses a unique solution on t � 0
for any given initial data belonging to Cb

F0
([−τ, 0]; R), f (u, v, t) and g(u, v, t) are locally

bounded in (u, v) and uniformly bounded in t. Assume also that (ii) there exist a function
V ∈ C2,1(R × R+, R+), γ ∈ L1(R+, R+) and ω1, ω2 ∈ C(R, R+) such that

LV (u, v, t) � γ (t) − ω1(u) + ω2(v), (u, v, t) ∈ R × R × R+, (A.3)

ω1(u) > ω2(u), ∀u �= 0, (A.4)

lim
|u|→∞

inf
0�t<∞

V (u, t) = ∞. (A.5)

Then it is valid that limt→∞ z(t;φ) = 0 for almost every φ ∈ Cb
F0

([−τ, 0]; R).
The following criterion on semi-martingale convergence is used in the preceding section

to investigate the sample transverse Lyapunov exponent of the driving system (1) and the
response system (2).

Criterion B [36]. Suppose that M̃(t) � 0 and it admits the following decomposition:

M̃(t) = M0 + A1(t) − A2(t) + M(t) for t � 0,
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where M0 is a non-negative F0-measurable random variable with E[M0] < ∞, A1(t) and
A2(t) are two continuous adapted increasing processes on t � 0 with A1(0) = A2(0) = 0 a.s.,
and M(t) is a real-valued continuous local martingale with M(0) = 0 a.s.. Then,

{ lim
t→∞ A1(t) < ∞} ⊂ { lim

t→∞ M̃(t) < ∞}
⋂

{ lim
t→∞ A2(t) < ∞} a.s.
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